Forschung
Beendete Projekte

Beendete Forschungsprojekte des Instituts für Transport- und Automatisierungstechnik

Automatisierungstechnik

  • IdentProLog
    Flexible Zielführung von Ladungsträgern in Produktion und Materialflusslogistik durch vollständig in den Informationsfluss integrierte Flurförderzeuge
    Jahr: 2008
    Förderung: BMBF
  • TagDrive
    Ziel des Projektes ist die Entwicklung eines Fahrzeugleitsystems mit kombinierter Spurführung und Navigation.
    Jahr: 2011
    Förderung: Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr
  • Vernetzte, kognitive Produktionssysteme (netkoPs)
    Intelligente Vernetzung in der Produktion – Ein Beitrag zum Zukunftsprojekt Industrie 4.0
    Jahr: 2013
    Förderung: BMBF
    Laufzeit: 11/2013 - 01/2017
  • Sensorintegration in Flurförderzeugreifen
    Der Ausfall von Flurförderzeugen kann den innerbetrieblichen Warentransport empfindlich stören. Reifenschäden durch das Fahren mit Überlast sowie das Umkippen des Fahrzeugs stellen Ausfälle mit großem Gefahrenpotential und langen Stillstandzeiten dar. Durch die Kenntnis der Reifeninnentemperatur sowie der Kraft bzw. des Drucks in der Bodenaufstandsfläche, können kritische Fahrzeug- und Reifenzustände bereits im Vorfeld erkannt und gegebenenfalls vermieden werden.
    Jahr: 2014
    Förderung: AIF, IFL
    Laufzeit: 05/2014 - 06/2016
  • InDaMonRo - Infrastrukturelle Datenübertragung zum prozessbegleitenden Schadensmonitoring beim Einzugsprozess von Rohrleitungen
    Im Fokus des Projektes InDaMonRo stehen die Realisierung einer infrastrukturellen Datenübertragung sowie die Untersuchung von Alternativen zum bestehenden Verfahren zur Schadensdetektion beim Einzugsprozess von Rohrleitungen.
    Jahr: 2014
    Förderung: „Zentrales Innovationsprogramm Mittelstand“ des Bundesministeriums für Wirtschaft und Technologie (BMWi) – Fördermodul Kooperationsnetzwerke (Kooperationspartner: Steffel KKS GmbH, ITA)
    Laufzeit: 11/2013 – 12/2015

Industrie 4.0

Optische Technologien

  • HYMNOS - Hybrid Numerical Optical Simulation
    Numerische Verfahren zur Berechnung von Lichtverteilungen in optischen Medien profitieren maßgeblich von aktuellen Trends in der Computertechnik. Ziel dieses Projektes ist daher die Kombination von unterschiedlichen Modellierungsansätzen auf unterschiedlichen zeitlichen und räumlichen Skalen. Hierzu werden unterschiedliche Aspekte aus interdisziplinären Themengebieten in der Physik und den Ingenieurswissenschaften modelltechnisch untersucht.
    Jahr: 2015
    Förderung: Land Niedersachsen
    Laufzeit: 10/2015 – 09/2018

Optronik

  • VIPlets – Nachweis des aerodynamischen Potentials von durch Schleifen und Laserabtrag hergestellten Riblets in einem hochbelasteten Axialverdichter
    Zur Steigerung der Leistungsdichte und des Wirkungsgrades in Gasturbinen und insbesondere in Flugtriebwerken bleibt es ein Hauptziel die aerodynamischen Verluste zu minimieren. Ein innovativer Ansatz hierzu ist die Mikrostrukturierung der überströmten Oberflächen der Beschaufelung mit den aus der Bionik bekannten Riblets. Diese kleinen Längsrippen (engl.: Riblets) können Strömungsverluste in der viskosen Unterschicht der turbulenten Grenzschicht mindern.
    Jahr: 2013
    Förderung: BMBF – VIP
    Laufzeit: 05/2013-04/2017
  • TRR 123 PlanOS – B01 Offset und Tintenstrahl-Drucken von Multimode-Wellenleitern
    Wie können Lichtwellenleiter gedruckt werden? Dieser Frage gehen Professoren und junge Wissenschaftler aus Freiburg und Hannover nach. Das Teilprojekt B01 hat die Aufgabe, multimodale Wellenleiter für hohe Lichtleistung mit einer Breite von zehn bis mehreren hundert Mikrometern herzustellen. Dabei werden die Vorteile von zwei Druckverfahren genutzt: der Flexodruck mit hohem Durchsatz und niedrigen Kosten sowie der Tintenstrahldruck mit einer großen Variabilität und hoher Auflösung.
    Jahr: 2013
    Förderung: DFG - Transregio 123
    Laufzeit: 01/2013 - 12/2017
  • HYMNOS - Hybrid Numerical Optical Simulation
    Numerische Verfahren zur Berechnung von Lichtverteilungen in optischen Medien profitieren maßgeblich von aktuellen Trends in der Computertechnik. Ziel dieses Projektes ist daher die Kombination von unterschiedlichen Modellierungsansätzen auf unterschiedlichen zeitlichen und räumlichen Skalen. Hierzu werden unterschiedliche Aspekte aus interdisziplinären Themengebieten in der Physik und den Ingenieurswissenschaften modelltechnisch untersucht.
    Jahr: 2015
    Förderung: Land Niedersachsen
    Laufzeit: 10/2015 – 09/2018
  • SFB 1153 – A4 Lokale Anpassung von Werkstoffeigenschaften an Umformrohlingen durch Auftragsschweißen zur Erzeugung gradierter hybrider Bauteile
    Das Teilprojekt zielt auf die Herstellung neuartiger hybrider Bauteile aus Werkstoffkombinationen ab. Dabei werden den Bauteilen lokale, belastungsabhängige Eigenschaftsprofile aufgeprägt. Um dies zu erreichen, werden Werkstoffe auf Umformrohlingen mittels Auftragsschweißen aufgebracht. Dabei ist die Werkstoffmenge und Position entscheidend, um die Werkstoffe durch Umformen gezielt verorten zu können.
    Jahr: 2015
    Förderung: DFG
    Laufzeit: 07/2015 – 06/2019
  • Gitterunterstützter Glasfaserschmelzkoppler zur selektiven Transversalmodenkopplung
    In diesem durch die Deutsche Forschungsgemeinschaft (DFG) gefördertem Forschungsprojekt soll das Prinzip sowie das Herstellungsverfahren für einen neuartigen transversalmodenselektiven Faserschmelzkoppler erforscht werden. Durch eine selektive Modenkopplung können verschiedene Moden als individuelle Übertragungskanäle genutzt werden, wodurch die Übertragungsbandbreite proportional zur Anzahl genutzter Moden erhöht wird. Wesentliches Merkmal des neuen Kopplers ist die selektive Transversalmodenkopplung mittels optischen Gitters.
    Jahr: 2016
    Förderung: DFG
    Laufzeit: 03/2016 – 02/2018

Robotik & Automatisierung

  • Automatisierbare Methode zur Verbindungsvorbereitung von Stahlseil-Fördergurten mittels Strahlverfahren
    Die Automatisierbarkeit der Verbindungsvorbereitung von Stahlseil-Fördergurten wird derzeit am Institut für Transport- und Automatisierungstechnik (ITA) in Zusammenarbeit mit dem Unterwassertechnikum des Instituts für Werkstoffkunde (IW) erforscht. Hierdurch soll zum einen eine konstante Qualität der Verbindung ermöglicht und zum anderen auch eine Festigkeitssteigerung erzielt werden. Dies reduziert das Risiko für Anlagenbetreiber eines möglichen Anlagenstillstands und den damit verbundenen Kostenausfall. Eine Festigkeitssteigerung ermöglicht außerdem höhere Massenströme und steigert somit die Produktivität der Anlage.
    Leitung: Dipl. -Ing. Patrick Riemer geb. Heitzmann
    Jahr: 2017
    Förderung: AiF, IFL
    Laufzeit: 01/2017 – 12/2018

Transporttechnik