Description
Laser transmission welding (LTW) is a known technique to join conventionally produced thermoplastic parts, e.g. injected molded parts. When using LTW for additively manufactured parts (usually prototypes, small series), this technique has to be evolved to overcome the difficulties in the part composition resulted in the additive manufacturing process itself. In this paper, a method is presented to enhance the weld seam quality of laser welded additively manufactured parts assisted by a neural network-based expert system. To validate the expert system, specimens are additively manufactured from polylactide. The parameters of the additive manufacturing process, the transmissivity, and the LTW process parameters are used to predict the shear tensile force with the neural network. The transparent samples are welded to black absorbent samples in overlap configuration and shear tensile tests are performed. In this work, the prediction of the shear tensile force with an accuracy of 88.1% of the neuronal network based expert system is demonstrated.